

## **NASA Exoplanet Update**

Dr. John L. Callas Manager, NASA-NSF Exoplanet Observational Research (NN-EXPLORE)



# **Transit Method**



# Radial Velocity Method





# **Direct Imaging**



#### Mass - Period Distribution



#### Cumulative Detections Per Year

09 Aug 2018 exoplanetarchive.ipac.caltech.edu



Discovery Year

### **Exoplanet Mass-Radius**





W. M. Keck Observatory <sup>1</sup> NASA/ESA Partnership

<sup>2</sup> NASA/ESA/CSA Partnership

<sup>3</sup> CNES/ESA

<sup>4</sup> ESA/Swiss Space Office

Large Binocular Telescope Interferometer



NN-EXPLORE

**Ground Telescopes with NASA participation** 

<sup>5</sup> 2020 Decadal Survey Studies

#### Key Kepler Results

- On average there is at least one planet for each of the stars in the night sky
- 2. Small planets are the most common type in the Galaxy
- 3. Earth-sized (0.5 to 2 Earth radii) planets in the Habitable Zone are common





## **Trappist-1 Discovery**



# Transiting Exoplanet Survey Satellite (TESS)





## Starlight Suppression

The Key to the Search for Life on Earth-sized Exoplanets



External Occulters (Starshades)





### Coronagraph/Telescope Technology Needs

#### **Contrast**





**Deformable mirrors** 



Image post-processing

# **Angular Resolution**





Segmented

#### **Contrast Stability**



sensing and control

Segment phasing and rigid body sensing and control



**Telescope vibration** sensing and control

#### **Detection Sensitivity**





Ultra-low noise visible and infrared detectors

#### Starshade Technology Needs





Suppressing scattered light off petal edges from off-axis Sunlight (S-2)





Maintaining lateral offset requirement between the spacecrafts (S-3)

3) Deployment Accuracy and Shape Stability



Suppressing diffracted light from on-axis starlight (S-1)



Fabricating the petals to high accuracy (S-4)

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

## WFIRST / AFTA Coronagraph

### Direct Imaging of our Nearest Exoplanet Neighbors



Coronagraph will develop the technologies for New Worlds Telescope mission

# Possible New Worlds Exoplanet Telescopes (mid 2030s)

Habitable Exoplanet **Imaging Mission** (HabEx) starshade coronagraph Large Ultra-Violet **Optical Infrared** Telescope (LUVOIR) **Origins Space** Telescope (OST)

## The Exoplanet Travel Bureau!





